首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64961篇
  免费   6036篇
  国内免费   4347篇
电工技术   2160篇
综合类   4722篇
化学工业   16238篇
金属工艺   7935篇
机械仪表   3530篇
建筑科学   5538篇
矿业工程   997篇
能源动力   2035篇
轻工业   4766篇
水利工程   515篇
石油天然气   1240篇
武器工业   734篇
无线电   5439篇
一般工业技术   15603篇
冶金工业   1853篇
原子能技术   495篇
自动化技术   1544篇
  2024年   218篇
  2023年   942篇
  2022年   1557篇
  2021年   2073篇
  2020年   2092篇
  2019年   1851篇
  2018年   1734篇
  2017年   2369篇
  2016年   2373篇
  2015年   2315篇
  2014年   3112篇
  2013年   3508篇
  2012年   4394篇
  2011年   4876篇
  2010年   3699篇
  2009年   3935篇
  2008年   3285篇
  2007年   4456篇
  2006年   4216篇
  2005年   3490篇
  2004年   2945篇
  2003年   2589篇
  2002年   2176篇
  2001年   2000篇
  2000年   1745篇
  1999年   1416篇
  1998年   1180篇
  1997年   996篇
  1996年   801篇
  1995年   697篇
  1994年   602篇
  1993年   511篇
  1992年   333篇
  1991年   251篇
  1990年   154篇
  1989年   126篇
  1988年   91篇
  1987年   57篇
  1986年   20篇
  1985年   25篇
  1984年   27篇
  1983年   12篇
  1982年   19篇
  1981年   7篇
  1980年   22篇
  1979年   14篇
  1963年   3篇
  1959年   5篇
  1956年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
王诗凝  冯杰  张文博  任衍峰 《橡胶科技》2020,18(2):0094-0097
研究改性防护蜡对轮胎胎侧胶性能的影响。结果表明,与传统防护蜡相比,改性防护蜡异构烷烃质量分数较小,结晶尺寸小且致密程度高。改性防护蜡可在不影响胎侧胶硫化特性和物理性能的前提下,大幅提高胎侧胶抗喷霜性能,保证轮胎表面不受臭氧侵蚀,在防止裂纹产生的同时明显改善成品轮胎外观。  相似文献   
32.
研究制备了海绵负载纳米Al2O3微球的复合吸附剂(NAS),并用于对Se(Ⅳ)和Se(Ⅵ)的吸附。结果表明,合成的纳米Al2O3微球(NAO)的平均尺寸为200~400 nm,在海绵上负载NAO会使其分散性更好。当NAO负载量分别为80 mg/g和60 mg/g时,NAS对Se(Ⅳ)和Se(Ⅵ)的吸附性能为佳,分别需要60、120 min达到平衡,适应pH为2~5;两者均符合准2级动力学模型;NAS对Se(Ⅳ)、Se(Ⅵ)的最大吸附容量分别为137.2、143.9 mg/g,能很好地与Freundlich模型拟合,说明NAS表面不均匀,且属于多层吸附。经过2次的循环,对Se(Ⅳ)和Se(Ⅵ)的去除率有所降低,但均仍保持在一定的水平,说明NAS可再生循环利用。NAS作为一种新型吸附剂去除水中Se具有较好的应用前景。  相似文献   
33.
陈义中  胡白杨  罗吉良 《橡胶科技》2020,18(3):0125-0127
从聚酯的结构设计、帘线浸胶工艺和在轮胎中的应用3个方面阐述聚酯结构特点与产品性能的关系。聚酯帘线行业应该密切关注汽车行业的发展态势,把握市场先机,进一步发展壮大;在新能源汽车逆势增长的形势下,高性能聚酯帘线需求量较大,帘线企业应拓展高性能聚酯帘线在轮胎冠带层、带束层和胎体等部件中的应用,同时联合轮胎企业开发特种聚酯材料和混纺材料等新产品。  相似文献   
34.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
35.
《Ceramics International》2022,48(14):20237-20244
Composite anode materials with a unique architecture of carbon nanotubes (CNTs)-chained spinel lithium titanate (Li4Ti5O12, LTO) nanoparticles are prepared for lithium ion capacitors (LICs). The CNTs networks derived from commercial conductive slurry not only bring out a steric hindrance effect to restrict the growth of Li4Ti5O12 particles but greatly enhance the electronic conductivity of the CNTs/LTO composites, both have contributed to the excellent rate capability and cycle stability. The capacity retention at 30 C (1 C = 175 mA g?1) is as high as 89.7% of that at 0.2 C with a CNTs content of 11 wt%. Meanwhile, there is not any capacity degradation after 500 cycles at 5 C. The LIC assembled with activated carbon (AC) cathode and such a CNTs/LTO composite anode displays excellent energy storage properties, including a high energy density of 35 Wh kg?1 at 7434 W kg?1, and a high capacity retention of 87.8% after 2200 cycles at 1 A g?1. These electrochemical performances outperform the reported data achieved on other LTO anode-based LICs. Considering the facile and scalable preparation process proposed herein, the CNTs/LTO composites can be very potential anode materials for hybrid capacitors towards high power-energy outputs.  相似文献   
36.
In the quest for new antibacterial agents, a series of novel long- and medium-chain mono- and disubstituted β-lactones was developed. Their activity against three pathogenic mycobacteria—M. abscessus, M. marinum, and M. tuberculosis—was assessed by the resazurin microtiter assay (REMA). Among the 16 β-lactones synthesized, only 3-hexadecyloxetan-2-one (VM005) exhibited promising activity against M. abscessus, whereas most of the β-lactones showed interesting activities against M. marinum, similar to that of the classical antibiotic, isoniazid. Regarding M. tuberculosis, six compounds were found to be active against this mycobacterium, with β-lactone VM008 [trans-(Z)-3-(hexadec-7-en-1-yl)-4-propyloxetan-2-one] being the best growth inhibitor. The promising antibacterial activities of the best compounds in this series suggest that these molecules may serve as leads for the development of much more efficient antimycobacterial agents.  相似文献   
37.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
38.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
39.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
40.
Based on theoretical analysis and numerical simulation, the impact of steel fibres on the stress intensity factor (SIF) at the crack tip for cementitious composite was studied. The enhanced toughness of steel fibre reinforced cementitious composite (SFRC) in resisting cracks was explained by the decrement of SIF caused by steel fibre inclusions at the crack tip of the composite. The equivalent initial fracture toughness was used to characterize the crack initiation of SFRC. A simplified method for determining the of SFRC was proposed based on a linear regression method. Fracture tests were conducted on three‐point bending notched beams with different steel fibre volume fractions and specimen sizes to study the crack initiation behaviour of aligned steel fibre reinforced cementitious composite (ASFRC). of ASFRC was calculated, and the size effect of was analysed. The results showed that slightly increased with the steel fibre volume fraction and gradually became stable. For the tested specimens, whose heights varied between 40 and 100 mm, the specimen size had little impact on the .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号